
Factor Performance Timings

Introduction
Summary of Results
Single Factor Timings
Multi-Factor Timings
Multi-Factor Timings (using custom data)
Factor Performance Results
Appendix

Introduction

This post is intended to give readers a better understanding of the speed of the MDO data retrieval
functions. The MDO Platform provides an API for users to access pricing, estimates, and fundamental
data. MDO also provides functionality to easily create and test quantitative factors. We believe that the
ability to run backtests in a reasonable amount of time (minutes) is critical to the research process. Every
data call and calculation is tested and optimized for performance.

These examples will show some typical processing times for calculating commonly used factor formulas.
For our timing, we use a universe of around 3,000 securities on month end dates from 6/30/2005 to
9/30/2018.

Summary of Results

We calculated Factor Values and Performance Statistics for around 3,000 securities on each month end
date from 6/30/2005 to 9/30/2018. This totals 160 dates (> 470,000 total observations). Total backtest times
were:

Single Factor: 70 seconds
Multi Factor: 3 minutes
Multi Factor (custom data): 35 seconds

Single Factor Timings

For this demonstration, we will run a generic Return on Equity (ROE) factor. Let’s start by retrieving the
constituents of the Russell 3000 index.

Next, we will run the QFPerformance() function on our factor, which will first calculate raw factor
values. Then, QFPerformance() will calculate information coefficients and quantile peformance over
various time horizons. The n = 5 argument indicates that you want to quintile the factor.

This will take around 70 seconds in total.

Multi-Factor Timings

The MDO platform also allows users to backtest multiple factors at a time, as well as models or
submodels. To calculate performance for the 7 below factors (plus 1 random factor), this takes around 3
minutes in total.

back to top

Multi-Factor Timings (using custom data)

For even faster backtesting performance, you can load historical factor values into custom data tables.

In the below example, we again calculate historical factor values. We then create a custom data table and
load those values. This will take around 2.5 minutes to calculate values and an additional 11 seconds to
create and load the data into a SQL table.

Retrieving the raw data will take around 1 second to run, using our same historical universe.

Calculating QFPerformance() on the pre-calculated values will reduce the total time from 3 minutes to
around 35 seconds. By retrieving the data from a custom data table, we can eliminate the time spent on
calculating our factors on the fly. This is also useful for more granular (weekly, daily) backtesting.

Factor Performance Results

Whether we calculate data on the fly or retrieve the data from custom data, we can return the same
backtest statistics and analysis to inform our decisions about these factors. The plots below show a few of
the backtest statistics available in QFPerformance() .

Appendix

SQL Server Specs

Operating system: Windows (Windows Server 2016 Datacenter)
Size: Standard DS14 v2 (16 vcpus, 112 GiB memory)
Disk: Azure Premium SSD (5000 IOPS limit/200 MB/s)

Factor Methodology

‘MDQ’ is the factor naming prefix used in the generic mdo.factors library which is provided to all
clients.
Fundamental factors use an avail of Quarterly, Semi-Annual, and Annual data.
Fundamental factors use Quarterly TTM for Income Statement and Cash Flow items.

back to top

Not for distribution. Past performance is no guarantee of future results. System times may vary.

2019-10-28

day <- DateRange(startDate = 20050630, endDate = 20180930, periodType = 'month', dom = 31)

universe <- ConstituentUniverse(items = "DS_CONST_MTH__FRUSSL3", days = day)

Run quant factor performance

factors <- c('MDQ_ROE')

performance <- QFPerformance(universe, factors, n = 5, returnHorizon = list(horizon = 12, pe

Run quant factor performance

factors <- c("MDQ_ROE", "MDQ_SURP_SUE", "MDQ_RANDOM", "MDQ_ASSET_GROWTH_5Y",

 "MDQ_BUYBACK_YLD", "MDQ_GROSS_MARGIN", "MDQ_PRICE_SALES", "MDQ_ROA")

performance <- QFPerformance(universe, factors, n = 5, returnHorizon = list(horizon = 12, pe

 sortOrder = QFInfo(factors, 'sortOrder')) # 180 seconds

CustomDataLoad(name = 'MDO_FACTOR_VALUES', x = universe, userGroup = 'research') # 11 second

CustomData(universe, items = customFactors, recent = TRUE, update = T, userGroup = 'research

 performance <- QFPerformance(universe, customFactors, n = 5, returnHorizon = list(horizon =

 sortOrder = QFInfo(factors, 'sortOrder')) # 35.25 seconds

Plot the information coefficents for each horizon

SummaryData(performance, "ICDetail", type = "plot")

Performance of each quantile

SummaryData(performance, "QuantileReturns", type = "plot")

Performance of top quantile vs. bottom quantile

SummaryData(performance, "TopQuantile", type = "plot", versus = "Bottom")

